db_signatory.rs 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364
  1. //! Main Signatory implementation
  2. //!
  3. //! It is named db_signatory because it uses a database to maintain state.
  4. use std::collections::HashMap;
  5. use std::sync::Arc;
  6. use bitcoin::bip32::{DerivationPath, Xpriv};
  7. use bitcoin::secp256k1::{self, Secp256k1};
  8. use cdk_common::dhke::{sign_message, verify_message};
  9. use cdk_common::mint::MintKeySetInfo;
  10. use cdk_common::nuts::{BlindSignature, BlindedMessage, CurrencyUnit, Id, MintKeySet, Proof};
  11. use cdk_common::{database, Error, PublicKey};
  12. use tokio::sync::RwLock;
  13. use tracing::instrument;
  14. use crate::common::{create_new_keyset, derivation_path_from_unit, init_keysets};
  15. use crate::signatory::{RotateKeyArguments, Signatory, SignatoryKeySet, SignatoryKeysets};
  16. /// In-memory Signatory
  17. ///
  18. /// This is the default signatory implementation for the mint.
  19. ///
  20. /// The private keys and the all key-related data is stored in memory, in the same process, but it
  21. /// is not accessible from the outside.
  22. pub struct DbSignatory {
  23. keysets: RwLock<HashMap<Id, (MintKeySetInfo, MintKeySet)>>,
  24. active_keysets: RwLock<HashMap<CurrencyUnit, Id>>,
  25. localstore: Arc<dyn database::MintKeysDatabase<Err = database::Error> + Send + Sync>,
  26. secp_ctx: Secp256k1<secp256k1::All>,
  27. custom_paths: HashMap<CurrencyUnit, DerivationPath>,
  28. xpriv: Xpriv,
  29. xpub: PublicKey,
  30. }
  31. impl DbSignatory {
  32. /// Creates a new MemorySignatory instance
  33. pub async fn new(
  34. localstore: Arc<dyn database::MintKeysDatabase<Err = database::Error> + Send + Sync>,
  35. seed: &[u8],
  36. mut supported_units: HashMap<CurrencyUnit, (u64, u8)>,
  37. custom_paths: HashMap<CurrencyUnit, DerivationPath>,
  38. ) -> Result<Self, Error> {
  39. let secp_ctx = Secp256k1::new();
  40. let xpriv = Xpriv::new_master(bitcoin::Network::Bitcoin, seed).expect("RNG busted");
  41. let (mut active_keysets, active_keyset_units) = init_keysets(
  42. xpriv,
  43. &secp_ctx,
  44. &localstore,
  45. &supported_units,
  46. &custom_paths,
  47. )
  48. .await?;
  49. supported_units.entry(CurrencyUnit::Auth).or_insert((0, 1));
  50. let mut tx = localstore.begin_transaction().await?;
  51. // Create new keysets for supported units that aren't covered by the current keysets
  52. for (unit, (fee, max_order)) in supported_units {
  53. if !active_keyset_units.contains(&unit) {
  54. let derivation_path = match custom_paths.get(&unit) {
  55. Some(path) => path.clone(),
  56. None => {
  57. derivation_path_from_unit(unit.clone(), 0).ok_or(Error::UnsupportedUnit)?
  58. }
  59. };
  60. let amounts = (0..max_order)
  61. .map(|i| 2_u64.pow(i as u32))
  62. .collect::<Vec<_>>();
  63. let (keyset, keyset_info) = create_new_keyset(
  64. &secp_ctx,
  65. xpriv,
  66. derivation_path,
  67. Some(0),
  68. unit.clone(),
  69. &amounts,
  70. fee,
  71. // TODO: add and connect settings for this
  72. None,
  73. );
  74. let id = keyset_info.id;
  75. tx.add_keyset_info(keyset_info).await?;
  76. tx.set_active_keyset(unit, id).await?;
  77. active_keysets.insert(id, keyset);
  78. }
  79. }
  80. tx.commit().await?;
  81. let keys = Self {
  82. keysets: Default::default(),
  83. active_keysets: Default::default(),
  84. localstore,
  85. custom_paths,
  86. xpub: xpriv.to_keypair(&secp_ctx).public_key().into(),
  87. secp_ctx,
  88. xpriv,
  89. };
  90. keys.reload_keys_from_db().await?;
  91. Ok(keys)
  92. }
  93. /// Load all the keysets from the database, even if they are not active.
  94. ///
  95. /// Since the database is owned by this process, we can load all the keysets in memory, and use
  96. /// it as the primary source, and the database as the persistence layer.
  97. ///
  98. /// Any operation performed with keysets, are done through this trait and never to the database
  99. /// directly.
  100. async fn reload_keys_from_db(&self) -> Result<(), Error> {
  101. let mut keysets = self.keysets.write().await;
  102. let mut active_keysets = self.active_keysets.write().await;
  103. keysets.clear();
  104. active_keysets.clear();
  105. let db_active_keysets = self.localstore.get_active_keysets().await?;
  106. for mut info in self.localstore.get_keyset_infos().await? {
  107. let id = info.id;
  108. let keyset = self.generate_keyset(&info);
  109. info.active = db_active_keysets.get(&info.unit) == Some(&info.id);
  110. if info.active {
  111. active_keysets.insert(info.unit.clone(), id);
  112. }
  113. keysets.insert(id, (info, keyset));
  114. }
  115. Ok(())
  116. }
  117. fn generate_keyset(&self, keyset_info: &MintKeySetInfo) -> MintKeySet {
  118. MintKeySet::generate_from_xpriv(
  119. &self.secp_ctx,
  120. self.xpriv,
  121. &keyset_info.amounts,
  122. keyset_info.unit.clone(),
  123. keyset_info.derivation_path.clone(),
  124. keyset_info.final_expiry,
  125. keyset_info.id.get_version(),
  126. )
  127. }
  128. }
  129. #[async_trait::async_trait]
  130. impl Signatory for DbSignatory {
  131. fn name(&self) -> String {
  132. format!("Signatory {}", env!("CARGO_PKG_VERSION"))
  133. }
  134. #[instrument(skip_all)]
  135. async fn blind_sign(
  136. &self,
  137. blinded_messages: Vec<BlindedMessage>,
  138. ) -> Result<Vec<BlindSignature>, Error> {
  139. let keysets = self.keysets.read().await;
  140. blinded_messages
  141. .into_iter()
  142. .map(|blinded_message| {
  143. let BlindedMessage {
  144. amount,
  145. blinded_secret,
  146. keyset_id,
  147. ..
  148. } = blinded_message;
  149. let (info, key) = keysets.get(&keyset_id).ok_or(Error::UnknownKeySet)?;
  150. if !info.active {
  151. return Err(Error::InactiveKeyset);
  152. }
  153. let key_pair = key.keys.get(&amount).ok_or(Error::UnknownKeySet)?;
  154. let c = sign_message(&key_pair.secret_key, &blinded_secret)?;
  155. let blinded_signature = BlindSignature::new(
  156. amount,
  157. c,
  158. keyset_id,
  159. &blinded_message.blinded_secret,
  160. key_pair.secret_key.clone(),
  161. )?;
  162. Ok(blinded_signature)
  163. })
  164. .collect::<Result<Vec<_>, _>>()
  165. }
  166. #[tracing::instrument(skip_all)]
  167. async fn verify_proofs(&self, proofs: Vec<Proof>) -> Result<(), Error> {
  168. let keysets = self.keysets.read().await;
  169. proofs.into_iter().try_for_each(|proof| {
  170. let (_, key) = keysets.get(&proof.keyset_id).ok_or(Error::UnknownKeySet)?;
  171. let key_pair = key.keys.get(&proof.amount).ok_or(Error::UnknownKeySet)?;
  172. verify_message(&key_pair.secret_key, proof.c, proof.secret.as_bytes())?;
  173. Ok(())
  174. })
  175. }
  176. #[tracing::instrument(skip_all)]
  177. async fn keysets(&self) -> Result<SignatoryKeysets, Error> {
  178. Ok(SignatoryKeysets {
  179. pubkey: self.xpub,
  180. keysets: self
  181. .keysets
  182. .read()
  183. .await
  184. .values()
  185. .map(|k| k.into())
  186. .collect::<Vec<_>>(),
  187. })
  188. }
  189. /// Add current keyset to inactive keysets
  190. /// Generate new keyset
  191. #[tracing::instrument(skip(self))]
  192. async fn rotate_keyset(&self, args: RotateKeyArguments) -> Result<SignatoryKeySet, Error> {
  193. let path_index = if let Some(current_keyset_id) =
  194. self.localstore.get_active_keyset_id(&args.unit).await?
  195. {
  196. let keyset_info = self
  197. .localstore
  198. .get_keyset_info(&current_keyset_id)
  199. .await?
  200. .ok_or(Error::UnknownKeySet)?;
  201. keyset_info.derivation_path_index.unwrap_or(1) + 1
  202. } else {
  203. 1
  204. };
  205. let derivation_path = match self.custom_paths.get(&args.unit) {
  206. Some(path) => path.clone(),
  207. None => derivation_path_from_unit(args.unit.clone(), path_index)
  208. .ok_or(Error::UnsupportedUnit)?,
  209. };
  210. let (keyset, info) = create_new_keyset(
  211. &self.secp_ctx,
  212. self.xpriv,
  213. derivation_path,
  214. Some(path_index),
  215. args.unit.clone(),
  216. &args.amounts,
  217. args.input_fee_ppk,
  218. // TODO: add and connect settings for this
  219. None,
  220. );
  221. let id = info.id;
  222. let mut tx = self.localstore.begin_transaction().await?;
  223. tx.add_keyset_info(info.clone()).await?;
  224. tx.set_active_keyset(args.unit, id).await?;
  225. tx.commit().await?;
  226. self.reload_keys_from_db().await?;
  227. Ok((&(info, keyset)).into())
  228. }
  229. }
  230. #[cfg(test)]
  231. mod test {
  232. use std::collections::HashSet;
  233. use bitcoin::key::Secp256k1;
  234. use bitcoin::Network;
  235. use cdk_common::{Amount, MintKeySet, PublicKey};
  236. use super::*;
  237. #[test]
  238. fn mint_mod_generate_keyset_from_seed() {
  239. let seed = "test_seed".as_bytes();
  240. let keyset = MintKeySet::generate_from_seed(
  241. &Secp256k1::new(),
  242. seed,
  243. &[1, 2],
  244. CurrencyUnit::Sat,
  245. derivation_path_from_unit(CurrencyUnit::Sat, 0).unwrap(),
  246. None,
  247. cdk_common::nut02::KeySetVersion::Version00,
  248. );
  249. assert_eq!(keyset.unit, CurrencyUnit::Sat);
  250. assert_eq!(keyset.keys.len(), 2);
  251. let expected_amounts_and_pubkeys: HashSet<(Amount, PublicKey)> = vec![
  252. (
  253. Amount::from(1),
  254. PublicKey::from_hex(
  255. "0257aed43bf2c1cdbe3e7ae2db2b27a723c6746fc7415e09748f6847916c09176e",
  256. )
  257. .unwrap(),
  258. ),
  259. (
  260. Amount::from(2),
  261. PublicKey::from_hex(
  262. "03ad95811e51adb6231613f9b54ba2ba31e4442c9db9d69f8df42c2b26fbfed26e",
  263. )
  264. .unwrap(),
  265. ),
  266. ]
  267. .into_iter()
  268. .collect();
  269. let amounts_and_pubkeys: HashSet<(Amount, PublicKey)> = keyset
  270. .keys
  271. .iter()
  272. .map(|(amount, pair)| (*amount, pair.public_key))
  273. .collect();
  274. assert_eq!(amounts_and_pubkeys, expected_amounts_and_pubkeys);
  275. }
  276. #[test]
  277. fn mint_mod_generate_keyset_from_xpriv() {
  278. let seed = "test_seed".as_bytes();
  279. let network = Network::Bitcoin;
  280. let xpriv = Xpriv::new_master(network, seed).expect("Failed to create xpriv");
  281. let keyset = MintKeySet::generate_from_xpriv(
  282. &Secp256k1::new(),
  283. xpriv,
  284. &[1, 2],
  285. CurrencyUnit::Sat,
  286. derivation_path_from_unit(CurrencyUnit::Sat, 0).unwrap(),
  287. None,
  288. cdk_common::nut02::KeySetVersion::Version00,
  289. );
  290. assert_eq!(keyset.unit, CurrencyUnit::Sat);
  291. assert_eq!(keyset.keys.len(), 2);
  292. let expected_amounts_and_pubkeys: HashSet<(Amount, PublicKey)> = vec![
  293. (
  294. Amount::from(1),
  295. PublicKey::from_hex(
  296. "0257aed43bf2c1cdbe3e7ae2db2b27a723c6746fc7415e09748f6847916c09176e",
  297. )
  298. .unwrap(),
  299. ),
  300. (
  301. Amount::from(2),
  302. PublicKey::from_hex(
  303. "03ad95811e51adb6231613f9b54ba2ba31e4442c9db9d69f8df42c2b26fbfed26e",
  304. )
  305. .unwrap(),
  306. ),
  307. ]
  308. .into_iter()
  309. .collect();
  310. let amounts_and_pubkeys: HashSet<(Amount, PublicKey)> = keyset
  311. .keys
  312. .iter()
  313. .map(|(amount, pair)| (*amount, pair.public_key))
  314. .collect();
  315. assert_eq!(amounts_and_pubkeys, expected_amounts_and_pubkeys);
  316. }
  317. }