123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278 |
- //! Diffie-Hellmann key exchange
- use std::ops::Mul;
- use bitcoin_hashes::sha256;
- use bitcoin_hashes::Hash;
- #[cfg(feature = "wallet")]
- use k256::ProjectivePoint;
- use k256::{Scalar, SecretKey};
- use crate::error;
- #[cfg(feature = "wallet")]
- use crate::nuts::nut00::{BlindedSignature, Proof, Proofs};
- #[cfg(feature = "wallet")]
- use crate::nuts::nut01::{Keys, PublicKey};
- #[cfg(feature = "wallet")]
- use crate::nuts::*;
- fn hash_to_curve(message: &[u8]) -> k256::PublicKey {
- let mut msg_to_hash = message.to_vec();
- loop {
- let hash = sha256::Hash::hash(&msg_to_hash);
- match k256::PublicKey::from_sec1_bytes(
- &[0x02u8]
- .iter()
- .chain(&hash.to_byte_array())
- .cloned()
- .collect::<Vec<u8>>(),
- ) {
- Ok(pubkey) => return pubkey,
- Err(_) => msg_to_hash = hash.to_byte_array().to_vec(),
- }
- }
- }
- #[cfg(feature = "wallet")]
- /// Blind Message Alice Step one
- pub fn blind_message(
- secret: &[u8],
- blinding_factor: Option<SecretKey>,
- ) -> Result<(PublicKey, SecretKey), error::wallet::Error> {
- let y = hash_to_curve(secret);
- let r: SecretKey = match blinding_factor {
- Some(sec_key) => sec_key,
- None => SecretKey::random(&mut rand::thread_rng()),
- };
- let b = ProjectivePoint::from(y) + ProjectivePoint::from(&r.public_key());
- Ok((k256::PublicKey::try_from(b)?.into(), r))
- }
- #[cfg(feature = "wallet")]
- /// Unblind Message (Alice Step 3)
- pub fn unblind_message(
- // C_
- blinded_key: PublicKey,
- r: SecretKey,
- // A
- mint_pubkey: PublicKey,
- ) -> Result<PublicKey, error::wallet::Error> {
- // C
- // Unblinded message
- let c = ProjectivePoint::from(Into::<k256::PublicKey>::into(blinded_key).as_affine())
- - Into::<k256::PublicKey>::into(mint_pubkey)
- .as_affine()
- .mul(Scalar::from(r.as_scalar_primitive()));
- Ok(k256::PublicKey::try_from(c)?.into())
- }
- #[cfg(feature = "wallet")]
- /// Construct Proof
- pub fn construct_proofs(
- promises: Vec<BlindedSignature>,
- rs: Vec<nut01::SecretKey>,
- secrets: Vec<String>,
- keys: &Keys,
- ) -> Result<Proofs, error::wallet::Error> {
- let mut proofs = vec![];
- for (i, promise) in promises.into_iter().enumerate() {
- let blinded_c = promise.c;
- let a: PublicKey = keys
- .amount_key(promise.amount)
- .ok_or(error::wallet::Error::CustomError(
- "Could not get proofs".to_string(),
- ))?
- .to_owned();
- let unblinded_signature = unblind_message(blinded_c, rs[i].clone().into(), a)?;
- let proof = Proof {
- id: Some(promise.id),
- amount: promise.amount,
- secret: secrets[i].clone(),
- c: unblinded_signature,
- };
- proofs.push(proof);
- }
- Ok(proofs)
- }
- #[cfg(feature = "mint")]
- /// Sign Blinded Message (Step2 bob)
- pub fn sign_message(
- a: SecretKey,
- blinded_message: k256::PublicKey,
- ) -> Result<k256::PublicKey, error::mint::Error> {
- Ok(k256::PublicKey::try_from(
- blinded_message
- .as_affine()
- .mul(Scalar::from(a.as_scalar_primitive())),
- )?)
- }
- #[cfg(feature = "mint")]
- /// Verify Message
- pub fn verify_message(
- a: SecretKey,
- unblinded_message: k256::PublicKey,
- msg: &str,
- ) -> Result<(), error::mint::Error> {
- // Y
- let y = hash_to_curve(msg.as_bytes());
- if unblinded_message
- == k256::PublicKey::try_from(*y.as_affine() * Scalar::from(a.as_scalar_primitive()))?
- {
- return Ok(());
- }
- Err(error::mint::Error::TokenNotVerifed)
- }
- #[cfg(test)]
- mod tests {
- use hex::decode;
- use k256::elliptic_curve::scalar::ScalarPrimitive;
- use super::*;
- use crate::utils::generate_secret;
- #[test]
- fn test_hash_to_curve() {
- let secret = "0000000000000000000000000000000000000000000000000000000000000000";
- let sec_hex = decode(secret).unwrap();
- let y = hash_to_curve(&sec_hex);
- let expected_y = k256::PublicKey::from_sec1_bytes(
- &hex::decode("0266687aadf862bd776c8fc18b8e9f8e20089714856ee233b3902a591d0d5f2925")
- .unwrap(),
- )
- .unwrap();
- assert_eq!(y, expected_y);
- let secret = "0000000000000000000000000000000000000000000000000000000000000001";
- let sec_hex = decode(secret).unwrap();
- let y = hash_to_curve(&sec_hex);
- let expected_y = k256::PublicKey::from_sec1_bytes(
- &hex::decode("02ec4916dd28fc4c10d78e287ca5d9cc51ee1ae73cbfde08c6b37324cbfaac8bc5")
- .unwrap(),
- )
- .unwrap();
- assert_eq!(y, expected_y);
- }
- #[test]
- fn test_blind_message() {
- let message = "test_message";
- let sec = SecretKey::new(ScalarPrimitive::ONE);
- let (b, r) = blind_message(message.as_bytes(), Some(sec.clone())).unwrap();
- assert_eq!(
- b,
- k256::PublicKey::from_sec1_bytes(
- &hex::decode("02a9acc1e48c25eeeb9289b5031cc57da9fe72f3fe2861d264bdc074209b107ba2")
- .unwrap()
- )
- .unwrap()
- .into()
- );
- assert_eq!(r, sec);
- }
- #[test]
- fn test_sign_message() {
- let message = "test_message";
- let sec = SecretKey::new(ScalarPrimitive::ONE);
- let (blinded_message, _r) = blind_message(message.as_bytes(), Some(sec)).unwrap();
- // A
- let bob_sec = SecretKey::new(ScalarPrimitive::ONE);
- // C_
- let signed = sign_message(bob_sec, blinded_message.into()).unwrap();
- assert_eq!(
- signed,
- k256::PublicKey::from_sec1_bytes(
- &hex::decode("02a9acc1e48c25eeeb9289b5031cc57da9fe72f3fe2861d264bdc074209b107ba2")
- .unwrap()
- )
- .unwrap()
- );
- }
- #[test]
- fn test_unblind_message() {
- let blinded_key = k256::PublicKey::from_sec1_bytes(
- &hex::decode("02a9acc1e48c25eeeb9289b5031cc57da9fe72f3fe2861d264bdc074209b107ba2")
- .unwrap(),
- )
- .unwrap();
- let r = SecretKey::new(ScalarPrimitive::ONE);
- let a = k256::PublicKey::from_sec1_bytes(
- &hex::decode("020000000000000000000000000000000000000000000000000000000000000001")
- .unwrap(),
- )
- .unwrap();
- let unblinded = unblind_message(blinded_key.into(), r, a.into()).unwrap();
- assert_eq!(
- Into::<PublicKey>::into(
- k256::PublicKey::from_sec1_bytes(
- &hex::decode(
- "03c724d7e6a5443b39ac8acf11f40420adc4f99a02e7cc1b57703d9391f6d129cd"
- )
- .unwrap()
- )
- .unwrap()
- ),
- unblinded
- );
- }
- #[ignore]
- #[test]
- fn test_blinded_dhke() {
- // a
- let bob_sec = SecretKey::random(&mut rand::thread_rng());
- // A
- let bob_pub = bob_sec.public_key();
- // let alice_sec = SecretKey::random(&mut rand::thread_rng());
- let x = generate_secret();
- // Y
- let y = hash_to_curve(x.as_bytes());
- // B_
- let blinded = blind_message(&y.to_sec1_bytes(), None).unwrap();
- // C_
- let signed = sign_message(bob_sec.clone(), blinded.0.into()).unwrap();
- // C
- let c = unblind_message(signed.into(), blinded.1, bob_pub.into()).unwrap();
- assert!(verify_message(bob_sec, c.into(), &x).is_ok());
- }
- }
|