db_signatory.rs 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. //! Main Signatory implementation
  2. //!
  3. //! It is named db_signatory because it uses a database to maintain state.
  4. use std::collections::HashMap;
  5. use std::sync::Arc;
  6. use bitcoin::bip32::{DerivationPath, Xpriv};
  7. use bitcoin::secp256k1::{self, Secp256k1};
  8. use cdk_common::dhke::{sign_message, verify_message};
  9. use cdk_common::mint::MintKeySetInfo;
  10. use cdk_common::nuts::{BlindSignature, BlindedMessage, CurrencyUnit, Id, MintKeySet, Proof};
  11. use cdk_common::{database, Error, PublicKey};
  12. use tokio::sync::RwLock;
  13. use tracing::instrument;
  14. use crate::common::{create_new_keyset, derivation_path_from_unit, init_keysets};
  15. use crate::signatory::{RotateKeyArguments, Signatory, SignatoryKeySet, SignatoryKeysets};
  16. /// In-memory Signatory
  17. ///
  18. /// This is the default signatory implementation for the mint.
  19. ///
  20. /// The private keys and the all key-related data is stored in memory, in the same process, but it
  21. /// is not accessible from the outside.
  22. pub struct DbSignatory {
  23. keysets: RwLock<HashMap<Id, (MintKeySetInfo, MintKeySet)>>,
  24. active_keysets: RwLock<HashMap<CurrencyUnit, Id>>,
  25. localstore: Arc<dyn database::MintKeysDatabase<Err = database::Error> + Send + Sync>,
  26. secp_ctx: Secp256k1<secp256k1::All>,
  27. custom_paths: HashMap<CurrencyUnit, DerivationPath>,
  28. xpriv: Xpriv,
  29. xpub: PublicKey,
  30. }
  31. impl DbSignatory {
  32. /// Creates a new MemorySignatory instance
  33. pub async fn new(
  34. localstore: Arc<dyn database::MintKeysDatabase<Err = database::Error> + Send + Sync>,
  35. seed: &[u8],
  36. mut supported_units: HashMap<CurrencyUnit, (u64, u8)>,
  37. custom_paths: HashMap<CurrencyUnit, DerivationPath>,
  38. ) -> Result<Self, Error> {
  39. let secp_ctx = Secp256k1::new();
  40. let xpriv = Xpriv::new_master(bitcoin::Network::Bitcoin, seed).expect("RNG busted");
  41. let (mut active_keysets, active_keyset_units) = init_keysets(
  42. xpriv,
  43. &secp_ctx,
  44. &localstore,
  45. &supported_units,
  46. &custom_paths,
  47. )
  48. .await?;
  49. supported_units.entry(CurrencyUnit::Auth).or_insert((0, 1));
  50. // Create new keysets for supported units that aren't covered by the current keysets
  51. for (unit, (fee, max_order)) in supported_units {
  52. if !active_keyset_units.contains(&unit) {
  53. let derivation_path = match custom_paths.get(&unit) {
  54. Some(path) => path.clone(),
  55. None => {
  56. derivation_path_from_unit(unit.clone(), 0).ok_or(Error::UnsupportedUnit)?
  57. }
  58. };
  59. let (keyset, keyset_info) = create_new_keyset(
  60. &secp_ctx,
  61. xpriv,
  62. derivation_path,
  63. Some(0),
  64. unit.clone(),
  65. max_order,
  66. fee,
  67. );
  68. let id = keyset_info.id;
  69. localstore.add_keyset_info(keyset_info).await?;
  70. localstore.set_active_keyset(unit, id).await?;
  71. active_keysets.insert(id, keyset);
  72. }
  73. }
  74. let keys = Self {
  75. keysets: Default::default(),
  76. active_keysets: Default::default(),
  77. localstore,
  78. custom_paths,
  79. xpub: xpriv.to_keypair(&secp_ctx).public_key().into(),
  80. secp_ctx,
  81. xpriv,
  82. };
  83. keys.reload_keys_from_db().await?;
  84. Ok(keys)
  85. }
  86. /// Load all the keysets from the database, even if they are not active.
  87. ///
  88. /// Since the database is owned by this process, we can load all the keysets in memory, and use
  89. /// it as the primary source, and the database as the persistence layer.
  90. ///
  91. /// Any operation performed with keysets, are done through this trait and never to the database
  92. /// directly.
  93. async fn reload_keys_from_db(&self) -> Result<(), Error> {
  94. let mut keysets = self.keysets.write().await;
  95. let mut active_keysets = self.active_keysets.write().await;
  96. keysets.clear();
  97. active_keysets.clear();
  98. let db_active_keysets = self.localstore.get_active_keysets().await?;
  99. for mut info in self.localstore.get_keyset_infos().await? {
  100. let id = info.id;
  101. let keyset = self.generate_keyset(&info);
  102. info.active = db_active_keysets.get(&info.unit) == Some(&info.id);
  103. if info.active {
  104. active_keysets.insert(info.unit.clone(), id);
  105. }
  106. keysets.insert(id, (info, keyset));
  107. }
  108. Ok(())
  109. }
  110. fn generate_keyset(&self, keyset_info: &MintKeySetInfo) -> MintKeySet {
  111. MintKeySet::generate_from_xpriv(
  112. &self.secp_ctx,
  113. self.xpriv,
  114. keyset_info.max_order,
  115. keyset_info.unit.clone(),
  116. keyset_info.derivation_path.clone(),
  117. )
  118. }
  119. }
  120. #[async_trait::async_trait]
  121. impl Signatory for DbSignatory {
  122. fn name(&self) -> String {
  123. format!("Signatory {}", env!("CARGO_PKG_VERSION"))
  124. }
  125. #[instrument(skip_all)]
  126. async fn blind_sign(
  127. &self,
  128. blinded_messages: Vec<BlindedMessage>,
  129. ) -> Result<Vec<BlindSignature>, Error> {
  130. let keysets = self.keysets.read().await;
  131. blinded_messages
  132. .into_iter()
  133. .map(|blinded_message| {
  134. let BlindedMessage {
  135. amount,
  136. blinded_secret,
  137. keyset_id,
  138. ..
  139. } = blinded_message;
  140. let (info, key) = keysets.get(&keyset_id).ok_or(Error::UnknownKeySet)?;
  141. if !info.active {
  142. return Err(Error::InactiveKeyset);
  143. }
  144. let key_pair = key.keys.get(&amount).ok_or(Error::UnknownKeySet)?;
  145. let c = sign_message(&key_pair.secret_key, &blinded_secret)?;
  146. let blinded_signature = BlindSignature::new(
  147. amount,
  148. c,
  149. keyset_id,
  150. &blinded_message.blinded_secret,
  151. key_pair.secret_key.clone(),
  152. )?;
  153. Ok(blinded_signature)
  154. })
  155. .collect::<Result<Vec<_>, _>>()
  156. }
  157. #[tracing::instrument(skip_all)]
  158. async fn verify_proofs(&self, proofs: Vec<Proof>) -> Result<(), Error> {
  159. let keysets = self.keysets.read().await;
  160. proofs.into_iter().try_for_each(|proof| {
  161. let (_, key) = keysets.get(&proof.keyset_id).ok_or(Error::UnknownKeySet)?;
  162. let key_pair = key.keys.get(&proof.amount).ok_or(Error::UnknownKeySet)?;
  163. verify_message(&key_pair.secret_key, proof.c, proof.secret.as_bytes())?;
  164. Ok(())
  165. })
  166. }
  167. #[tracing::instrument(skip_all)]
  168. async fn keysets(&self) -> Result<SignatoryKeysets, Error> {
  169. Ok(SignatoryKeysets {
  170. pubkey: self.xpub,
  171. keysets: self
  172. .keysets
  173. .read()
  174. .await
  175. .values()
  176. .map(|k| k.into())
  177. .collect::<Vec<_>>(),
  178. })
  179. }
  180. /// Add current keyset to inactive keysets
  181. /// Generate new keyset
  182. #[tracing::instrument(skip(self))]
  183. async fn rotate_keyset(&self, args: RotateKeyArguments) -> Result<SignatoryKeySet, Error> {
  184. let path_index = if let Some(current_keyset_id) =
  185. self.localstore.get_active_keyset_id(&args.unit).await?
  186. {
  187. let keyset_info = self
  188. .localstore
  189. .get_keyset_info(&current_keyset_id)
  190. .await?
  191. .ok_or(Error::UnknownKeySet)?;
  192. keyset_info.derivation_path_index.unwrap_or(1) + 1
  193. } else {
  194. 1
  195. };
  196. let derivation_path = match self.custom_paths.get(&args.unit) {
  197. Some(path) => path.clone(),
  198. None => derivation_path_from_unit(args.unit.clone(), path_index)
  199. .ok_or(Error::UnsupportedUnit)?,
  200. };
  201. let (keyset, info) = create_new_keyset(
  202. &self.secp_ctx,
  203. self.xpriv,
  204. derivation_path,
  205. Some(path_index),
  206. args.unit.clone(),
  207. args.max_order,
  208. args.input_fee_ppk,
  209. );
  210. let id = info.id;
  211. self.localstore.add_keyset_info(info.clone()).await?;
  212. self.localstore.set_active_keyset(args.unit, id).await?;
  213. self.reload_keys_from_db().await?;
  214. Ok((&(info, keyset)).into())
  215. }
  216. }
  217. #[cfg(test)]
  218. mod test {
  219. use std::collections::HashSet;
  220. use bitcoin::key::Secp256k1;
  221. use bitcoin::Network;
  222. use cdk_common::{Amount, MintKeySet, PublicKey};
  223. use super::*;
  224. #[test]
  225. fn mint_mod_generate_keyset_from_seed() {
  226. let seed = "test_seed".as_bytes();
  227. let keyset = MintKeySet::generate_from_seed(
  228. &Secp256k1::new(),
  229. seed,
  230. 2,
  231. CurrencyUnit::Sat,
  232. derivation_path_from_unit(CurrencyUnit::Sat, 0).unwrap(),
  233. );
  234. assert_eq!(keyset.unit, CurrencyUnit::Sat);
  235. assert_eq!(keyset.keys.len(), 2);
  236. let expected_amounts_and_pubkeys: HashSet<(Amount, PublicKey)> = vec![
  237. (
  238. Amount::from(1),
  239. PublicKey::from_hex(
  240. "0257aed43bf2c1cdbe3e7ae2db2b27a723c6746fc7415e09748f6847916c09176e",
  241. )
  242. .unwrap(),
  243. ),
  244. (
  245. Amount::from(2),
  246. PublicKey::from_hex(
  247. "03ad95811e51adb6231613f9b54ba2ba31e4442c9db9d69f8df42c2b26fbfed26e",
  248. )
  249. .unwrap(),
  250. ),
  251. ]
  252. .into_iter()
  253. .collect();
  254. let amounts_and_pubkeys: HashSet<(Amount, PublicKey)> = keyset
  255. .keys
  256. .iter()
  257. .map(|(amount, pair)| (*amount, pair.public_key))
  258. .collect();
  259. assert_eq!(amounts_and_pubkeys, expected_amounts_and_pubkeys);
  260. }
  261. #[test]
  262. fn mint_mod_generate_keyset_from_xpriv() {
  263. let seed = "test_seed".as_bytes();
  264. let network = Network::Bitcoin;
  265. let xpriv = Xpriv::new_master(network, seed).expect("Failed to create xpriv");
  266. let keyset = MintKeySet::generate_from_xpriv(
  267. &Secp256k1::new(),
  268. xpriv,
  269. 2,
  270. CurrencyUnit::Sat,
  271. derivation_path_from_unit(CurrencyUnit::Sat, 0).unwrap(),
  272. );
  273. assert_eq!(keyset.unit, CurrencyUnit::Sat);
  274. assert_eq!(keyset.keys.len(), 2);
  275. let expected_amounts_and_pubkeys: HashSet<(Amount, PublicKey)> = vec![
  276. (
  277. Amount::from(1),
  278. PublicKey::from_hex(
  279. "0257aed43bf2c1cdbe3e7ae2db2b27a723c6746fc7415e09748f6847916c09176e",
  280. )
  281. .unwrap(),
  282. ),
  283. (
  284. Amount::from(2),
  285. PublicKey::from_hex(
  286. "03ad95811e51adb6231613f9b54ba2ba31e4442c9db9d69f8df42c2b26fbfed26e",
  287. )
  288. .unwrap(),
  289. ),
  290. ]
  291. .into_iter()
  292. .collect();
  293. let amounts_and_pubkeys: HashSet<(Amount, PublicKey)> = keyset
  294. .keys
  295. .iter()
  296. .map(|(amount, pair)| (*amount, pair.public_key))
  297. .collect();
  298. assert_eq!(amounts_and_pubkeys, expected_amounts_and_pubkeys);
  299. }
  300. }