123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345 |
- //! Main Signatory implementation
- //!
- //! It is named db_signatory because it uses a database to maintain state.
- use std::collections::HashMap;
- use std::sync::Arc;
- use bitcoin::bip32::{DerivationPath, Xpriv};
- use bitcoin::secp256k1::{self, Secp256k1};
- use cdk_common::dhke::{sign_message, verify_message};
- use cdk_common::mint::MintKeySetInfo;
- use cdk_common::nuts::{BlindSignature, BlindedMessage, CurrencyUnit, Id, MintKeySet, Proof};
- use cdk_common::{database, Error, PublicKey};
- use tokio::sync::RwLock;
- use tracing::instrument;
- use crate::common::{create_new_keyset, derivation_path_from_unit, init_keysets};
- use crate::signatory::{RotateKeyArguments, Signatory, SignatoryKeySet, SignatoryKeysets};
- /// In-memory Signatory
- ///
- /// This is the default signatory implementation for the mint.
- ///
- /// The private keys and the all key-related data is stored in memory, in the same process, but it
- /// is not accessible from the outside.
- pub struct DbSignatory {
- keysets: RwLock<HashMap<Id, (MintKeySetInfo, MintKeySet)>>,
- active_keysets: RwLock<HashMap<CurrencyUnit, Id>>,
- localstore: Arc<dyn database::MintKeysDatabase<Err = database::Error> + Send + Sync>,
- secp_ctx: Secp256k1<secp256k1::All>,
- custom_paths: HashMap<CurrencyUnit, DerivationPath>,
- xpriv: Xpriv,
- xpub: PublicKey,
- }
- impl DbSignatory {
- /// Creates a new MemorySignatory instance
- pub async fn new(
- localstore: Arc<dyn database::MintKeysDatabase<Err = database::Error> + Send + Sync>,
- seed: &[u8],
- mut supported_units: HashMap<CurrencyUnit, (u64, u8)>,
- custom_paths: HashMap<CurrencyUnit, DerivationPath>,
- ) -> Result<Self, Error> {
- let secp_ctx = Secp256k1::new();
- let xpriv = Xpriv::new_master(bitcoin::Network::Bitcoin, seed).expect("RNG busted");
- let (mut active_keysets, active_keyset_units) = init_keysets(
- xpriv,
- &secp_ctx,
- &localstore,
- &supported_units,
- &custom_paths,
- )
- .await?;
- supported_units.entry(CurrencyUnit::Auth).or_insert((0, 1));
- // Create new keysets for supported units that aren't covered by the current keysets
- for (unit, (fee, max_order)) in supported_units {
- if !active_keyset_units.contains(&unit) {
- let derivation_path = match custom_paths.get(&unit) {
- Some(path) => path.clone(),
- None => {
- derivation_path_from_unit(unit.clone(), 0).ok_or(Error::UnsupportedUnit)?
- }
- };
- let (keyset, keyset_info) = create_new_keyset(
- &secp_ctx,
- xpriv,
- derivation_path,
- Some(0),
- unit.clone(),
- max_order,
- fee,
- );
- let id = keyset_info.id;
- localstore.add_keyset_info(keyset_info).await?;
- localstore.set_active_keyset(unit, id).await?;
- active_keysets.insert(id, keyset);
- }
- }
- let keys = Self {
- keysets: Default::default(),
- active_keysets: Default::default(),
- localstore,
- custom_paths,
- xpub: xpriv.to_keypair(&secp_ctx).public_key().into(),
- secp_ctx,
- xpriv,
- };
- keys.reload_keys_from_db().await?;
- Ok(keys)
- }
- /// Load all the keysets from the database, even if they are not active.
- ///
- /// Since the database is owned by this process, we can load all the keysets in memory, and use
- /// it as the primary source, and the database as the persistence layer.
- ///
- /// Any operation performed with keysets, are done through this trait and never to the database
- /// directly.
- async fn reload_keys_from_db(&self) -> Result<(), Error> {
- let mut keysets = self.keysets.write().await;
- let mut active_keysets = self.active_keysets.write().await;
- keysets.clear();
- active_keysets.clear();
- let db_active_keysets = self.localstore.get_active_keysets().await?;
- for mut info in self.localstore.get_keyset_infos().await? {
- let id = info.id;
- let keyset = self.generate_keyset(&info);
- info.active = db_active_keysets.get(&info.unit) == Some(&info.id);
- if info.active {
- active_keysets.insert(info.unit.clone(), id);
- }
- keysets.insert(id, (info, keyset));
- }
- Ok(())
- }
- fn generate_keyset(&self, keyset_info: &MintKeySetInfo) -> MintKeySet {
- MintKeySet::generate_from_xpriv(
- &self.secp_ctx,
- self.xpriv,
- keyset_info.max_order,
- keyset_info.unit.clone(),
- keyset_info.derivation_path.clone(),
- )
- }
- }
- #[async_trait::async_trait]
- impl Signatory for DbSignatory {
- fn name(&self) -> String {
- format!("Signatory {}", env!("CARGO_PKG_VERSION"))
- }
- #[instrument(skip_all)]
- async fn blind_sign(
- &self,
- blinded_messages: Vec<BlindedMessage>,
- ) -> Result<Vec<BlindSignature>, Error> {
- let keysets = self.keysets.read().await;
- blinded_messages
- .into_iter()
- .map(|blinded_message| {
- let BlindedMessage {
- amount,
- blinded_secret,
- keyset_id,
- ..
- } = blinded_message;
- let (info, key) = keysets.get(&keyset_id).ok_or(Error::UnknownKeySet)?;
- if !info.active {
- return Err(Error::InactiveKeyset);
- }
- let key_pair = key.keys.get(&amount).ok_or(Error::UnknownKeySet)?;
- let c = sign_message(&key_pair.secret_key, &blinded_secret)?;
- let blinded_signature = BlindSignature::new(
- amount,
- c,
- keyset_id,
- &blinded_message.blinded_secret,
- key_pair.secret_key.clone(),
- )?;
- Ok(blinded_signature)
- })
- .collect::<Result<Vec<_>, _>>()
- }
- #[tracing::instrument(skip_all)]
- async fn verify_proofs(&self, proofs: Vec<Proof>) -> Result<(), Error> {
- let keysets = self.keysets.read().await;
- proofs.into_iter().try_for_each(|proof| {
- let (_, key) = keysets.get(&proof.keyset_id).ok_or(Error::UnknownKeySet)?;
- let key_pair = key.keys.get(&proof.amount).ok_or(Error::UnknownKeySet)?;
- verify_message(&key_pair.secret_key, proof.c, proof.secret.as_bytes())?;
- Ok(())
- })
- }
- #[tracing::instrument(skip_all)]
- async fn keysets(&self) -> Result<SignatoryKeysets, Error> {
- Ok(SignatoryKeysets {
- pubkey: self.xpub,
- keysets: self
- .keysets
- .read()
- .await
- .values()
- .map(|k| k.into())
- .collect::<Vec<_>>(),
- })
- }
- /// Add current keyset to inactive keysets
- /// Generate new keyset
- #[tracing::instrument(skip(self))]
- async fn rotate_keyset(&self, args: RotateKeyArguments) -> Result<SignatoryKeySet, Error> {
- let path_index = if let Some(current_keyset_id) =
- self.localstore.get_active_keyset_id(&args.unit).await?
- {
- let keyset_info = self
- .localstore
- .get_keyset_info(¤t_keyset_id)
- .await?
- .ok_or(Error::UnknownKeySet)?;
- keyset_info.derivation_path_index.unwrap_or(1) + 1
- } else {
- 1
- };
- let derivation_path = match self.custom_paths.get(&args.unit) {
- Some(path) => path.clone(),
- None => derivation_path_from_unit(args.unit.clone(), path_index)
- .ok_or(Error::UnsupportedUnit)?,
- };
- let (keyset, info) = create_new_keyset(
- &self.secp_ctx,
- self.xpriv,
- derivation_path,
- Some(path_index),
- args.unit.clone(),
- args.max_order,
- args.input_fee_ppk,
- );
- let id = info.id;
- self.localstore.add_keyset_info(info.clone()).await?;
- self.localstore.set_active_keyset(args.unit, id).await?;
- self.reload_keys_from_db().await?;
- Ok((&(info, keyset)).into())
- }
- }
- #[cfg(test)]
- mod test {
- use std::collections::HashSet;
- use bitcoin::key::Secp256k1;
- use bitcoin::Network;
- use cdk_common::{Amount, MintKeySet, PublicKey};
- use super::*;
- #[test]
- fn mint_mod_generate_keyset_from_seed() {
- let seed = "test_seed".as_bytes();
- let keyset = MintKeySet::generate_from_seed(
- &Secp256k1::new(),
- seed,
- 2,
- CurrencyUnit::Sat,
- derivation_path_from_unit(CurrencyUnit::Sat, 0).unwrap(),
- );
- assert_eq!(keyset.unit, CurrencyUnit::Sat);
- assert_eq!(keyset.keys.len(), 2);
- let expected_amounts_and_pubkeys: HashSet<(Amount, PublicKey)> = vec![
- (
- Amount::from(1),
- PublicKey::from_hex(
- "0257aed43bf2c1cdbe3e7ae2db2b27a723c6746fc7415e09748f6847916c09176e",
- )
- .unwrap(),
- ),
- (
- Amount::from(2),
- PublicKey::from_hex(
- "03ad95811e51adb6231613f9b54ba2ba31e4442c9db9d69f8df42c2b26fbfed26e",
- )
- .unwrap(),
- ),
- ]
- .into_iter()
- .collect();
- let amounts_and_pubkeys: HashSet<(Amount, PublicKey)> = keyset
- .keys
- .iter()
- .map(|(amount, pair)| (*amount, pair.public_key))
- .collect();
- assert_eq!(amounts_and_pubkeys, expected_amounts_and_pubkeys);
- }
- #[test]
- fn mint_mod_generate_keyset_from_xpriv() {
- let seed = "test_seed".as_bytes();
- let network = Network::Bitcoin;
- let xpriv = Xpriv::new_master(network, seed).expect("Failed to create xpriv");
- let keyset = MintKeySet::generate_from_xpriv(
- &Secp256k1::new(),
- xpriv,
- 2,
- CurrencyUnit::Sat,
- derivation_path_from_unit(CurrencyUnit::Sat, 0).unwrap(),
- );
- assert_eq!(keyset.unit, CurrencyUnit::Sat);
- assert_eq!(keyset.keys.len(), 2);
- let expected_amounts_and_pubkeys: HashSet<(Amount, PublicKey)> = vec![
- (
- Amount::from(1),
- PublicKey::from_hex(
- "0257aed43bf2c1cdbe3e7ae2db2b27a723c6746fc7415e09748f6847916c09176e",
- )
- .unwrap(),
- ),
- (
- Amount::from(2),
- PublicKey::from_hex(
- "03ad95811e51adb6231613f9b54ba2ba31e4442c9db9d69f8df42c2b26fbfed26e",
- )
- .unwrap(),
- ),
- ]
- .into_iter()
- .collect();
- let amounts_and_pubkeys: HashSet<(Amount, PublicKey)> = keyset
- .keys
- .iter()
- .map(|(amount, pair)| (*amount, pair.public_key))
- .collect();
- assert_eq!(amounts_and_pubkeys, expected_amounts_and_pubkeys);
- }
- }
|